MTH 303

Real analysis

Homework 6

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$
|f(x)-f(y)| \leq(x-y)^{2}
$$

for all x and y in \mathbb{R}. Show that f is constant.
2. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable at $x \in(a, b)$. Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x-h)}{2 h}=f^{\prime}(x)
$$

Show by an example that the above limit may exist even if $f^{\prime}(x)$ does not.
3. Let $f:(a, b) \rightarrow \mathbb{R}$ be twice differentiable at $x \in(a, b)$. Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)
$$

Show by an example that the above limit may exist even if $f^{\prime \prime}(x)$ does not.
4. If $f(x)=|x|^{3}$ for all $x \in \mathbb{R}$, compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for each $x \in \mathbb{R}$. Does $f^{(3)}(0)$ exist?
5. Show that $f(x)=x|x|$ is differentiable on \mathbb{R}. Compute $f^{\prime}(x)$. Is f^{\prime} continuous? Does $f^{\prime \prime}$ exist?
6. Show that each of the following functions are infinitely differentiable on \mathbb{R}.

$$
f(x)= \begin{cases}0, & x \leq 0 \tag{a}\\ e^{-\frac{1}{x}}, & x>0\end{cases}
$$

(b)

$$
f(x)= \begin{cases}0, & x \leq 0 \\ e^{-\frac{1}{x^{2}}}, & x>0\end{cases}
$$

7. Suppose f is defined and differentiable for every $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$. Define $g(x)=f(x+1)-f(x)$. Prove that $g(x) \rightarrow 0$ as $x \rightarrow+\infty$.
8. Let $f:(a, b) \rightarrow \mathbb{R}$ a differentiable function such that $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Show that f is monotone on (a, b).
9. Suppose $f^{\prime}(x)>0$ in (a, b). Prove that f is strictly increasing in (a, b), and let g be the inverse function of f. Prove that g is differentiable, and that

$$
g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \text { for all } x \in(a, b)
$$

MTH 303 Homework 6 (Continued)

10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $\left|f^{\prime}(x)\right| \leq M$ for some $M>0$ for all $x \in \mathbb{R}$.
(a) Show that f is uniformly continuous on \mathbb{R}.
(b) If $\epsilon>0$ is sufficiently small, then show that the function $g(x)=x+\epsilon f(x)$ is one-one.
11. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Show that $f(a) \neq f(b)$.
12. (Cauchy's form of MVT) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable. Assume that $g^{\prime}(x) \neq 0$ for each $x \in(a, b)$, the prove that there exists $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} .
$$

13. Use MVT to prove the following inequalities.
(a) For $0<a<b$, show that $b^{\frac{1}{n}}-a^{\frac{1}{n}}<(b-a)^{\frac{1}{n}}$.
(b) $|\sin x-\sin y| \leq|x-y|$.
(c) $1+x<e^{x}$ for all $x>0$.
14. If

$$
c_{0}+\frac{c_{1}}{2}+\frac{c_{2}}{3}+\cdots+\frac{c_{n}}{n+1}=0
$$

where $c_{0}, c_{1}, \ldots, c_{n}$ are real constants, prove that the equation

$$
c_{0}+c_{1} x+\cdots+c_{n} x^{n}=0
$$

has at least one real root in $(0,1)$.
15. Show that the function $f(x)=x^{3}-3 x^{2}+17$ is not one-one on the interval $[-1,1]$.
16. Show that the equation $x^{3}-3 x+17$ has at most one root in the interval $[-1,1]$.
17. If f is differentiable on $[a, b]$, then show that f cannot have any simple discontinuity on $[a, b]$.
18. Let f be a continuous real-valued function on \mathbb{R}, of which it is known that $f^{\prime}(x)$ exists for all $x \neq 0$ and that $f^{\prime}(x) \rightarrow 3$ as $x \rightarrow 0$. Does it follow that $f^{\prime}(0)$ exist?
19. Use Taylor's formula to prove that
(a) $\log 2=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ (Hint: Consider $\left.f(x)=\log (1+x)\right)$.
(b) $e=\sum_{k=0}^{\infty} \frac{1}{k!}$
(c) $1-\frac{x^{2}}{2}<\cos x$ for all $x \in \mathbb{R}$ (Hint: Consider $f(x)=\cos x$).

MTH 303 Homework 6 (Continued)

20. (L'Hospital's Rule) Suppose f and g are differentiable in (a, b), and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, where $-\infty \leq a<b \leq+\infty$. Suppose

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow A \text { as } x \rightarrow a
$$

If $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$ or if $g(x) \rightarrow+\infty$ as $x \rightarrow a$, then show that

$$
\frac{f(x)}{g(x)} \rightarrow A \text { as } x \rightarrow a .
$$

21. Use L'Hospital's Rule to show that
(a) $\lim _{x \rightarrow \infty} \frac{\log x}{x}=0$
(b) $\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=0$ where $n \in \mathbb{N}$.
22. Suppose f is differentiable on $[a, b], f(a)=0$, and there is a real number M such that $\left|f^{\prime}(x)\right| \leq M|f(x)|$ on $[a, b]$. Prove that $f(x)=0$ for all $x \in[a, b]$.
23. If $f:(a, b) \rightarrow \mathbb{R}$ is convex and $c \in(a, b)$ is a local mimimum, then show that c is a global minimum for f.
