Homework 6

1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that

$$|f(x) - f(y)| \le (x - y)^2$$

for all x and y in \mathbb{R} . Show that f is constant.

2. Let $f:(a,b) \to \mathbb{R}$ be differentiable at $x \in (a,b)$. Show that

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x).$$

Show by an example that the above limit may exist even if f'(x) does not.

3. Let $f:(a,b) \to \mathbb{R}$ be twice differentiable at $x \in (a,b)$. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show by an example that the above limit may exist even if f''(x) does not.

- 4. If $f(x) = |x|^3$ for all $x \in \mathbb{R}$, compute f'(x) and f''(x) for each $x \in \mathbb{R}$. Does $f^{(3)}(0)$ exist?
- 5. Show that f(x) = x|x| is differentiable on \mathbb{R} . Compute f'(x). Is f' continuous? Does f'' exist?
- 6. Show that each of the following functions are infinitely differentiable on \mathbb{R} .

(a)

$$f(x) = \begin{cases} 0, & x \le 0\\ e^{-\frac{1}{x}}, & x > 0 \end{cases}$$

(b)

$$f(x) = \begin{cases} 0, & x \le 0\\ e^{-\frac{1}{x^2}}, & x > 0 \end{cases}$$

- 7. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Define g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.
- 8. Let $f:(a,b) \to \mathbb{R}$ a differentiable function such that $f'(x) \neq 0$ for all $x \in (a,b)$. Show that f is monotone on (a,b).
- 9. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be the inverse function of f. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)} \text{ for all } x \in (a, b).$$

Page 1 of 3 Please go on to the next page...

MTH 303 Homework 6 (Continued)

- 10. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $|f'(x)| \leq M$ for some M > 0 for all $x \in \mathbb{R}$.
 - (a) Show that f is uniformly continuous on \mathbb{R} .
 - (b) If $\epsilon > 0$ is sufficiently small, then show that the function $g(x) = x + \epsilon f(x)$ is one-one.
- 11. Let $f:[a,b] \to \mathbb{R}$ be such that $f'(x) \neq 0$ for all $x \in (a,b)$. Show that $f(a) \neq f(b)$.
- 12. (Cauchy's form of MVT) Let $f, g : [a, b] \to \mathbb{R}$ be differentiable. Assume that $g'(x) \neq 0$ for each $x \in (a, b)$, the prove that there exists $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

- 13. Use MVT to prove the following inequalities.
 - (a) For 0 < a < b, show that $b^{\frac{1}{n}} a^{\frac{1}{n}} < (b-a)^{\frac{1}{n}}$.
 - (b) $|\sin x \sin y| \le |x y|$.
 - (c) $1 + x < e^x$ for all x > 0.
- 14. If

$$c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \dots + \frac{c_n}{n+1} = 0,$$

where c_0, c_1, \ldots, c_n are real constants, prove that the equation

$$c_0 + c_1 x + \dots + c_n x^n = 0$$

has at least one real root in (0, 1).

- 15. Show that the function $f(x) = x^3 3x^2 + 17$ is not one-one on the interval [-1, 1].
- 16. Show that the equation $x^3 3x + 17$ has at most one root in the interval [-1, 1].
- 17. If f is differentiable on [a, b], then show that f cannot have any simple discontinuity on [a, b].
- 18. Let f be a continuous real-valued function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exist?
- 19. Use Taylor's formula to prove that
 - (a) $\log 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$ (Hint: Consider $f(x) = \log(1+x)$). (b) $e = \sum_{k=0}^{\infty} \frac{1}{k!}$
 - (c) $1 \frac{x^2}{2} < \cos x$ for all $x \in \mathbb{R}$ (Hint: Consider $f(x) = \cos x$).

MTH 303 Homework 6 (Continued)

20. (L'Hospital's Rule) Suppose f and g are differentiable in (a, b), and $g'(x) \neq 0$ for all $x \in (a, b)$, where $-\infty \leq a < b \leq +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \text{ as } x \to a.$$

If $f(x) \to 0$ and $g(x) \to 0$ as $x \to a$ or if $g(x) \to +\infty$ as $x \to a$, then show that

$$\frac{f(x)}{g(x)} \to A \text{ as } x \to a.$$

- 21. Use L'Hospital's Rule to show that
 - (a) $\lim_{x \to \infty} \frac{\log x}{x} = 0$
 - (b) $\lim_{x \to \infty} \frac{x^n}{e^x} = 0$ where $n \in \mathbb{N}$.
- 22. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number M such that $|f'(x)| \leq M|f(x)|$ on [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$.
- 23. If $f:(a,b) \to \mathbb{R}$ is convex and $c \in (a,b)$ is a local minimum, then show that c is a global minimum for f.